identity:
name: llm
author: Dify
label:
en_US: LLM
zh_Hans: LLM
pt_BR: LLM
description:
human:
en_US: A tool for invoking a large language model
zh_Hans: 用于调用大型语言模型的工具
pt_BR: A tool for invoking a large language model
llm: A tool for invoking a large language model
parameters:
- name: prompt
type: string
required: true
label:
en_US: Prompt string
zh_Hans: 提示字符串
pt_BR: Prompt string
human_description:
en_US: used for searching
zh_Hans: 用于搜索网页内容
pt_BR: used for searching
llm_description: key words for searching
form: llm
- name: model
type: model-selector
scope: llm
required: true
label:
en_US: Model
zh_Hans: 使用的模型
pt_BR: Model
human_description:
en_US: Model
zh_Hans: 使用的模型
pt_BR: Model
llm_description: which Model to invoke
form: form
extra:
python:
source: tools/llm.py
from collections.abc import Generator
from typing import Any
from dify_plugin import Tool
from dify_plugin.entities.model.llm import LLMModelConfig
from dify_plugin.entities.tool import ToolInvokeMessage
from dify_plugin.entities.model.message import SystemPromptMessage, UserPromptMessage
class LLMTool(Tool):
def _invoke(self, tool_parameters: dict[str, Any]) -> Generator[ToolInvokeMessage]:
response = self.session.model.llm.invoke(
model_config=tool_parameters.get('model'),
prompt_messages=[
SystemPromptMessage(
content='you are a helpful assistant'
),
UserPromptMessage(
content=tool_parameters.get('query')
)
],
stream=True
)
for chunk in response:
if chunk.delta.message:
assert isinstance(chunk.delta.message.content, str)
yield self.create_text_message(text=chunk.delta.message.content)