In addition to the system's built-in content moderation types, Dify also supports user-defined content moderation rules. This method is suitable for developers customizing their own private deployments. For instance, in an enterprise internal customer service setup, it may be required that users, while querying or customer service agents while responding, not only avoid entering words related to violence, sex, and illegal activities but also avoid specific terms forbidden by the enterprise or violating internally established moderation logic. Developers can extend custom content moderation rules at the code level in a private deployment of Dify.
Quick Start
Here is an example of extending a Cloud Service content moderation type, with the steps as follows:
Initialize the directory
Add the frontend component definition file
Add the implementation class
Preview the frontend interface
Debug the extension
1. Initialize the Directory
To add a custom type Cloud Service, create the relevant directories and files under the api/core/moderation directory.
cloud_service.py code template where you can implement specific business logic.
Note: The class variable name must be the same as the custom type name, matching the directory and file names, and must be unique.
from core.moderation.base import Moderation, ModerationAction, ModerationInputsResult, ModerationOutputsResultclassCloudServiceModeration(Moderation):""" The name of custom type must be unique, keep the same with directory and file name. """ name:str="cloud_service"@classmethoddefvalidate_config(cls,tenant_id:str,config:dict) ->None:""" schema.json validation. It will be called when user saves the config. Example: .. code-block:: python config = { "cloud_provider": "GoogleCloud", "api_endpoint": "https://api.example.com", "api_keys": "123456", "inputs_config": { "enabled": True, "preset_response": "Your content violates our usage policy. Please revise and try again." }, "outputs_config": { "enabled": True, "preset_response": "Your content violates our usage policy. Please revise and try again." } } :param tenant_id: the id of workspace :param config: the variables of form config :return: """ cls._validate_inputs_and_outputs_config(config, True)ifnot config.get("cloud_provider"):raiseValueError("cloud_provider is required")ifnot config.get("api_endpoint"):raiseValueError("api_endpoint is required")ifnot config.get("api_keys"):raiseValueError("api_keys is required")defmoderation_for_inputs(self,inputs:dict,query:str="") -> ModerationInputsResult:""" Moderation for inputs. :param inputs: user inputs :param query: the query of chat app, there is empty if is completion app :return: the moderation result """ flagged =False preset_response =""if self.config['inputs_config']['enabled']: preset_response = self.config['inputs_config']['preset_response']if query: inputs['query__']= query flagged = self._is_violated(inputs) # return ModerationInputsResult(flagged=flagged, action=ModerationAction.overridden, inputs=inputs, query=query)
return ModerationInputsResult(flagged=flagged, action=ModerationAction.DIRECT_OUTPUT, preset_response=preset_response)
defmoderation_for_outputs(self,text:str) -> ModerationOutputsResult:""" Moderation for outputs. :param text: the text of LLM response :return: the moderation result """ flagged =False preset_response =""if self.config['outputs_config']['enabled']: preset_response = self.config['outputs_config']['preset_response'] flagged = self._is_violated({'text': text})# return ModerationOutputsResult(flagged=flagged, action=ModerationAction.overridden, text=text) return ModerationOutputsResult(flagged=flagged, action=ModerationAction.DIRECT_OUTPUT, preset_response=preset_response)
def_is_violated(self,inputs:dict):""" The main logic of moderation. :param inputs: :return: the moderation result """returnFalse
4. Debug the Extension
At this point, you can select the custom Cloud Service content moderation extension type for debugging in the Dify application orchestration interface.
Implementation Class Template
from core.moderation.base import Moderation, ModerationAction, ModerationInputsResult, ModerationOutputsResultclassCloudServiceModeration(Moderation):""" The name of custom type must be unique, keep the same with directory and file name. """ name:str="cloud_service"@classmethoddefvalidate_config(cls,tenant_id:str,config:dict) ->None:""" schema.json validation. It will be called when user saves the config. :param tenant_id: the id of workspace :param config: the variables of form config :return: """ cls._validate_inputs_and_outputs_config(config, True)# implement your own logic heredefmoderation_for_inputs(self,inputs:dict,query:str="") -> ModerationInputsResult:""" Moderation for inputs. :param inputs: user inputs :param query: the query of chat app, there is empty if is completion app :return: the moderation result """ flagged =False preset_response =""# implement your own logic here # return ModerationInputsResult(flagged=flagged, action=ModerationAction.overridden, inputs=inputs, query=query)
return ModerationInputsResult(flagged=flagged, action=ModerationAction.DIRECT_OUTPUT, preset_response=preset_response)
defmoderation_for_outputs(self,text:str) -> ModerationOutputsResult:""" Moderation for outputs. :param text: the text of LLM response :return: the moderation result """ flagged =False preset_response =""# implement your own logic here# return ModerationOutputsResult(flagged=flagged, action=ModerationAction.overridden, text=text) return ModerationOutputsResult(flagged=flagged, action=ModerationAction.DIRECT_OUTPUT, preset_response=preset_response)
Detailed Introduction to Implementation Class Development
def validate_config
The schema.json form validation method is called when the user clicks "Publish" to save the configuration.
config form parameters
{{variable}} custom variable of the form
inputs_config input moderation preset response
enabled whether it is enabled
preset_response input preset response
outputs_config output moderation preset response
enabled whether it is enabled
preset_response output preset response
def moderation_for_inputs
Input validation function
inputs: values passed by the end user
query: the current input content of the end user in a conversation, a fixed parameter for conversational applications.
ModerationInputsResult
flagged: whether it violates the moderation rules
action: action to be taken
direct_output: directly output the preset response
overridden: override the passed variable values
preset_response: preset response (returned only when action=direct_output)
inputs: values passed by the end user, with key as the variable name and value as the variable value (returned only when action=overridden)
query: overridden current input content of the end user in a conversation, a fixed parameter for conversational applications (returned only when action=overridden)
def moderation_for_outputs
Output validation function
text: content output by the model
moderation_for_outputs: output validation function
text: content of the LLM response. When the LLM output is streamed, this is the content in segments of 100 characters.
ModerationOutputsResult
flagged: whether it violates the moderation rules
action: action to be taken
direct_output: directly output the preset response
overridden: override the passed variable values
preset_response: preset response (returned only when action=direct_output)
text: overridden content of the LLM response (returned only when action=overridden).