Here, we will use GoogleSearch as an example to demonstrate how to quickly integrate a tool.
1. Prepare the Tool Provider yaml
Introduction
This yaml declares a new tool provider, and includes information like the provider's name, icon, author, and other details that are fetched by the frontend for display.
Example
We need to create a google module (folder) under core/tools/provider/builtin, and create google.yaml. The name must be consistent with the module name.
Subsequently, all operations related to this tool will be carried out under this module.
identity:# Basic information of the tool providerauthor:Dify# Authorname:google# Name, unique, no duplication with other providerslabel:# Label for frontend displayen_US:Google# English labelzh_Hans:Google# Chinese labeldescription:# Description for frontend displayen_US:Google# English descriptionzh_Hans:Google# Chinese descriptionicon:icon.svg# Icon, needs to be placed in the _assets folder of the current module
The identity field is mandatory, it contains the basic information of the tool provider, including author, name, label, description, icon, etc.
The icon needs to be placed in the _assets folder of the current module, you can refer to: api/core/tools/provider/builtin/google/_assets/icon.svg
Google, as a third-party tool, uses the API provided by SerpApi, which requires an API Key to use. This means that this tool needs a credential to use. For tools like wikipedia, there is no need to fill in the credential field, you can refer to: api/core/tools/provider/builtin/wikipedia/wikipedia.yaml
identity:author:Difyname:wikipedialabel:en_US:Wikipediazh_Hans:维基百科pt_BR:Wikipediadescription:en_US:Wikipedia is a free online encyclopedia, created and edited by volunteers around the world.zh_Hans:维基百科是一个由全世界的志愿者创建和编辑的免费在线百科全书。pt_BR:Wikipedia is a free online encyclopedia, created and edited by volunteers around the world.icon:icon.svgcredentials_for_provider:
After configuring the credential field, the effect is as follows:
identity:author:Difyname:googlelabel:en_US:Googlezh_Hans:Googledescription:en_US:Googlezh_Hans:Googleicon:icon.svgcredentials_for_provider:# Credential fieldserpapi_api_key:# Credential field nametype:secret-input# Credential field typerequired:true# Required or notlabel:# Credential field labelen_US:SerpApi API key# English labelzh_Hans:SerpApi API key# Chinese labelplaceholder:# Credential field placeholderen_US:Please input your SerpApi API key# English placeholderzh_Hans:请输入你的 SerpApi API key# Chinese placeholderhelp:# Credential field help texten_US:Get your SerpApi API key from SerpApi# English help textzh_Hans:从 SerpApi 获取您的 SerpApi API key# Chinese help texturl:https://serpapi.com/manage-api-key# Credential field help link
type: Credential field type, currently can be either secret-input, text-input, or select , corresponding to password input box, text input box, and drop-down box, respectively. If set to secret-input, it will mask the input content on the frontend, and the backend will encrypt the input content.
3. Prepare Tool yaml
A provider can have multiple tools, each tool needs a yaml file to describe, this file contains the basic information, parameters, output, etc. of the tool.
Still taking GoogleSearch as an example, we need to create a tools module under the google module, and create tools/google_search.yaml, the content is as follows.
identity:# Basic information of the toolname:google_search# Tool name, unique, no duplication with other toolsauthor:Dify# Authorlabel:# Label for frontend displayen_US:GoogleSearch# English labelzh_Hans:谷歌搜索# Chinese labeldescription:# Description for frontend displayhuman:# Introduction for frontend display, supports multiple languages en_US: A tool for performing a Google SERP search and extracting snippets and webpages.Input should be a search query.
zh_Hans:一个用于执行 Google SERP 搜索并提取片段和网页的工具。输入应该是一个搜索查询。 llm: A tool for performing a Google SERP search and extracting snippets and webpages.Input should be a search query. # Introduction passed to LLM, in order to make LLM better understand this tool, we suggest to write as detailed information about this tool as possible here, so that LLM can understand and use this tool
parameters:# Parameter list - name:query# Parameter nametype:string# Parameter typerequired:true# Required or notlabel:# Parameter labelen_US:Query string# English labelzh_Hans:查询语句# Chinese labelhuman_description:# Introduction for frontend display, supports multiple languagesen_US:used for searchingzh_Hans:用于搜索网页内容 llm_description: key words for searching # Introduction passed to LLM, similarly, in order to make LLM better understand this parameter, we suggest to write as detailed information about this parameter as possible here, so that LLM can understand this parameter
form: llm # Form type, llm means this parameter needs to be inferred by Agent, the frontend will not display this parameter
- name:result_typetype:select# Parameter typerequired:trueoptions:# Drop-down box options - value:textlabel:en_US:textzh_Hans:文本 - value:linklabel:en_US:linkzh_Hans:链接default:linklabel:en_US:Result typezh_Hans:结果类型human_description:en_US:used for selecting the result type, text or linkzh_Hans:用于选择结果类型,使用文本还是链接进行展示 form: form # Form type, form means this parameter needs to be filled in by the user on the frontend before the conversation starts
The identity field is mandatory, it contains the basic information of the tool, including name, author, label, description, etc.
parameters Parameter list
name Parameter name, unique, no duplication with other parameters
type Parameter type, currently supports string, number, boolean, select four types, corresponding to string, number, boolean, drop-down box
required Required or not
In llm mode, if the parameter is required, the Agent is required to infer this parameter
In form mode, if the parameter is required, the user is required to fill in this parameter on the frontend before the conversation starts
options Parameter options
In llm mode, Dify will pass all options to LLM, LLM can infer based on these options
In form mode, when type is select, the frontend will display these options
default Default value
label Parameter label, for frontend display
human_description Introduction for frontend display, supports multiple languages
llm_description Introduction passed to LLM, in order to make LLM better understand this parameter, we suggest to write as detailed information about this parameter as possible here, so that LLM can understand this parameter
form Form type, currently supports llm, form two types, corresponding to Agent self-inference and frontend filling
4. Add Tool Logic
After completing the tool configuration, we can start writing the tool code that defines how it is invoked.
Create google_search.py under the google/tools module, the content is as follows.
The overall logic of the tool is in the _invoke method, this method accepts two parameters: user_id and tool_parameters, which represent the user ID and tool parameters respectively
Return Data
When the tool returns, you can choose to return one message or multiple messages, here we return one message, using create_text_message and create_link_message can create a text message or a link message.
5. Add Provider Code
Finally, we need to create a provider class under the provider module to implement the provider's credential verification logic. If the credential verification fails, it will throw a ToolProviderCredentialValidationError exception.
Create google.py under the google module, the content is as follows.
from core.tools.entities.tool_entities import ToolInvokeMessage, ToolProviderTypefrom core.tools.tool.tool import Toolfrom core.tools.provider.builtin_tool_provider import BuiltinToolProviderControllerfrom core.tools.errors import ToolProviderCredentialValidationErrorfrom core.tools.provider.builtin.google.tools.google_search import GoogleSearchToolfrom typing import Any, DictclassGoogleProvider(BuiltinToolProviderController):def_validate_credentials(self,credentials: Dict[str, Any]) ->None:try: # 1. Here you need to instantiate a GoogleSearchTool with GoogleSearchTool(), it will automatically load the yaml configuration of GoogleSearchTool, but at this time it does not have credential information inside
# 2. Then you need to use the fork_tool_runtime method to pass the current credential information to GoogleSearchTool
# 3. Finally, invoke it, the parameters need to be passed according to the parameter rules configured in the yaml of GoogleSearchTool
GoogleSearchTool().fork_tool_runtime( meta={"credentials": credentials, } ).invoke( user_id='', tool_parameters={"query": "test","result_type": "link" }, )exceptExceptionas e:raiseToolProviderCredentialValidationError(str(e))
Completion
After the above steps are completed, we can see this tool on the frontend, and it can be used in the Agent.
Of course, because google_search needs a credential, before using it, you also need to input your credentials on the frontend.